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Abstract: The more frequent occurrence of marine harmful algal blooms (HABs) and recent problems
with newly-described toxins in Puget Sound have increased the risk for illness and have negatively
impacted sustainable access to shellfish in Washington State. Marine toxins that affect safe shellfish
harvest because of their impact on human health are the saxitoxins that cause paralytic shellfish
poisoning (PSP), domoic acid that causes amnesic shellfish poisoning (ASP), diarrhetic shellfish toxins
that cause diarrhetic shellfish poisoning (DSP) and the recent measurement of azaspiracids, known to
cause azaspiracid poisoning (AZP), at low concentrations in Puget Sound shellfish. The flagellate,
Heterosigma akashiwo, impacts the health and harvestability of aquacultured and wild salmon in Puget
Sound. The more recently described flagellates that cause the illness or death of cultivated and wild
shellfish, include Protoceratium reticulatum, known to produce yessotoxins, Akashiwo sanguinea and
Phaeocystis globosa. This increased incidence of HABs, especially dinoflagellate HABs that are expected
in increase with enhanced stratification linked to climate change, has necessitated the partnership of
state regulatory programs with SoundToxins, the research, monitoring and early warning program
for HABs in Puget Sound, that allows shellfish growers, Native tribes, environmental learning centers
and citizens, to be the “eyes on the coast”. This partnership enables safe harvest of wholesome
seafood for consumption in the region and helps to describe unusual events that impact the health of
oceans, wildlife and humans.

Keywords: amnesic shellfish poisoning; Pseudo-nitzschia; paralytic shellfish poisoning; Alexandrium;
diarrhetic shellfish poisoning; Dinophysis; Heterosigma; Protoceratium; Akashiwo; Phaeocystis; SoundToxins

Key Contribution: SoundToxins: the harmful algal bloom research and monitoring partnership for Puget
Sound, is an early warning system to restore and maintain the rich marine resources of coastal communities.

1. Introduction

Washington State’s bounty of scenic beauty, natural resources and abundant marine
waters is home to 8 million residents and is a destination for visitors from around the
world. Native tribes have strong cultural connections with the sea, shellfish and fish in
both Puget Sound and the Washington Coast, where for centuries, native people have
lived by the precept, “when the tide is out, the table is set”. The social and cultural values
of shellfish are ingrained in the livelihood of subsistence harvesters such as members of
the Quinault Indian Nation, where the expression in their native language, “ta’aWshi
xa’iits’os”, translates to “clam hungry”. This desire to maintain and increase access to
shellfish has led many tribes to reestablish clam gardens for subsistence and ceremonial
harvest and to establish shellfish farms for commercial production.

Shellfish growers farm more bivalve shellfish than any other state in the United States
with the total farmed production valued at more than USD 150 million [1]. Aquacul-
tured shellfish species include clams, oysters, mussels and geoduck. Washington has
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115 commercial growing areas that represent harvestable shellfish acreage in either ap-
proved, conditional, restricted or prohibited status in which over 900 shellfish farms are
permitted to operate [2]. The commercial production of shellfish occurs primarily in
rural areas and provides critical family wage jobs. Some companies have been in opera-
tion for over 100 years, safely and sustainably producing shellfish for local, national and
international markets.

Recreational harvesting on Washington’s beaches is a popular activity for both resi-
dents and visitors to the region, involving approximately 300,000 people [3], relying on
clean water and shellfish free from toxins. In Washington, shellfish can be harvested
from publicly owned tidelands. With over 350 public harvesting locations and about
275 shellfishing tides per year, there are bountiful opportunities to harvest shellfish on pub-
lic lands. Puget Sound and coastal beaches are home to many varieties of bivalve shellfish,
including manila clam (Ruditapes philippinarum), littleneck clam (Leukoma staminea), butter
clam (Saxidomus gigantea), varnish clam (Nuttalia obscurata), macoma clam (Macoma spp.),
horse clam (Tresus capax and T. nuttallii), eastern softshell clam (Mya arenaria), geoduck
clam (Panopea generosa), razor clam (Siliqua patula), as well as mussels (Mytilus trossulus and
M. galloprovincialis) and oysters (Crassostrea spp. and Ostrea spp.). Season openers vary by
beach. Razor clams are only found on the outer coast because they require a high wave
energy sandy beach to survive. The recreational razor clam harvest season usually occurs
in fall through spring of each year. These abundant resources for subsistence, ceremonial,
commercial and recreational harvest are threatened by both water quality downgrades and
several species of naturally occurring algae. These algae can produce toxins of concern to
human or animal health when environmental conditions, such as increasing temperature
and changing salinity, encourage their populations to bloom. During these harmful algal
blooms (HABs), the algae and their toxins are concentrated in the shellfish tissues as they
feed on the bloom and transfer toxins up the food chain to wildlife and humans via direct
ingestion of toxic shellfish or planktivorous fish. However, not all HABs impact human or
marine mammal health. High concentrations of some algal species can cause bird, fish or
shellfish mortalities in large numbers, either due to hypoxia or toxins that directly impact
shellfish health, such as yessotoxins. Maintaining seafood security and shellfish health
are essential to retain the cultural, social and economic benefits of shellfish to harvesters
and consumers, thus the effective and timely monitoring of HABs and the toxins that they
produce are critical.

1.1. Species of HABs in Puget Sound

There are many species of phytoplankton in Puget Sound that are of concern both
for human consumption of shellfish and fish and shellfish health. One of the earliest
identified and most deadly toxins is paralytic shellfish toxins (PSTs), produced by species
of the dinoflagellate genus Alexandrium. The human illness syndrome, paralytic shellfish
poisoning (PSP), is caused by the ingestion of shellfish or fish that contain these PSTs,
resulting in symptoms such as tingling of the lips and tongue, short-term paralysis and
death. Reports from Captain George Vancouver’s explorations of the region documented
the death of one of his crew in 1793 after eating mussels contaminated with PSTs in
the neighboring uncharted coastline of what is now known as British Columbia [4]. In
the 1940s, the first three fatalities due to PSP were documented in Washington State
shellfish [5]. Shellfish monitoring for PSTs by health officials was sporadic until the early
1970s, when levels in shellfish above the FDA regulatory limit of 80 µg/100 g shellfish
tissue occurred in northern Puget Sound [5]. The Washington State Department of Health
(WDOH) systematically monitors PSTs throughout the state’s marine waters, with most
monitoring sites located in Puget Sound where most of the state’s recreational, commercial
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and subsistence shellfish harvest occurs. Since 1989, WDOH has deployed a sentinel mussel
monitoring program [6] through which mussels are suspended from wire mesh cages below
floats and docks. These mussels are sampled routinely and tested for PSTs using the mouse
bioassay [7]. The high numbers of PST closures over time and space and the number of
species of harvestable shellfish monitored by WDOH are summarized in [5], illustrating
the need for phytoplankton monitoring as a complement to shellfish testing.

The marine diatom, Pseudo-nitzschia, can produce the toxin, domoic acid (DA), which
when concentrated in shellfish tissues and consumed by humans, can cause amnesic
shellfish poisoning (ASP). This human illness syndrome, ASP, can cause temporary or
permanent short-term memory loss and even death, as was experienced by consumers of
mussels from Prince Edward Island, Canada, during the first recorded ASP event in 1987 [8].
The first closures in the US due to ASP occurred on the outer coast of Washington State
in 1991 [9–11], where razor clams were able to retain the toxin, DA, for up to 1 year [12].
In 1997, the WDOH reported the presence of DA at a shellfish farm in Puget Sound, but
concentrations above the regulatory closure level of 20 ppm were not detected until 2005,
impacting commercial and tribal shellfish harvest [13]. Since that year, DA closures in Puget
Sound have been infrequent; however, costly closures of the razor clam and Dungeness
crab (Metacarcinus magister) harvest occur almost annually on outer Washington coast
beaches [14].

The dinoflagellates, Dinophysis and Prorocentrum, can produce the toxins, okadaic
acid and dinophysistoxins, which cause diarrhetic shellfish poisoning (DSP) in humans
(reviewed in [15]). Monitoring for diarrhetic shellfish toxins by WDOH began in 2011 when
three people became ill with DSP at a campsite in northern Puget Sound after recreationally
harvesting and consuming mussels. Elevated concentrations of several species of the
marine dinoflagellate, Dinophysis, were observed by SoundToxins partners (see Section 1.2,
below) at the time of this event, the first documented cases of DSP in the US. Levels of
dinophysistoxins were measured in mussels at 2–10 times above the regulatory level of
16 µg/100 g [16].

In 2007, a research study that collaborated with SoundToxins documented the presence
of several species of the small dinoflagellate, Azadinium, in Puget Sound [17], known to
produce the toxins, azaspiracids, that cause a syndrome in humans called azaspiracid
shellfish poisoning (AZP). The first cases of AZP were discovered after several people
consumed cultivated shellfish from Ireland and suffered from symptoms similar to DSP,
including nausea, vomiting, severe diarrhea and stomach cramps [18]. In Washington State,
a new azaspiracid, named AZA-59 was identified [17], and levels of this toxin in shellfish
measured well below the regulatory limit [19]. Although the risk of AZP is estimated to
be low, continued vigilance in monitoring Azadinium will provide early warning of any
increased risk.

Several species of marine flagellates documented by SoundToxins have contributed to
summer shellfish mortalities in Puget Sound. Although these species have been present
for centuries, they were largely unrecognized as agents impacting shellfish health because
many other potential causes of ‘summer mortality’ were researched first and not identified
as primary causes [20]. Protoceratium reticulatum, a producer of yessotoxins [21], has been
measured in extremely high abundance in south Puget Sound, coincident with massive
manila clam mortalities. In 2019, the highest concentration of P. reticulatum corresponded
to 0.9 ug/L yessotoxin (YTX) in shellfish tissues [20], a concentration similar to those
measured during massive abalone mortalites in South Africa [22] and clam mortalites in
Chile [23]. Other flagellates, present in high concentrations in Puget Sound and known to
kill shellfish in other areas of the world, are Akashiwo sanginea, believed to be responsible
for mass mortalities in Texas, USA [24], China [25] and Peru [26] and Phaeocystis globosa,
which has also been associated with Puget Sound shellfish mortalities [20].
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Heterosigma akashiwo is a major killer of finfish, including cultivated Atlantic (Salmo
salar) and Pacific (Oncorhynchus spp.) salmon [27] grown in marine net pens and in the
wild. There are reports of wild salmon and marine fish mortality in Washington coastal
waters [28,29]; however, “farmed” fish are particularly vulnerable because when winds or
currents move the blooms into penned areas, the fish cannot escape the affected waters.
Heterosigma akashiwo has caused the death of salmonids held in net pens in Puget Sound
since at least 1976 [30,31] when the salmon aquaculture industry in Washington State
suffered economic losses of ~USD 2 to 6 million per episode due to H. akashiwo blooms.
More than 100 salmon hatcheries are operated in Washington State by the Washington
State Department of Fish and Wildlife, Native American tribes, the U.S. Fish and Wildlife
Service and private companies, such as Cooke Aquaculture and Long Live the Kings. The
mechanism of H. akashiwo toxicity is not well understood; therefore monitoring of the
presence of cells currently provides the best early warning of potential risk.

1.2. The SoundToxins Program

In 1998, the Olympic Region Harmful Algal Bloom (ORHAB) partnership was formed
to better manage HABs on Washington’s rural outer coast. This collaborative partnership
between the coastal tribes, researchers and state fisheries and health managers led to
improved understanding of HABs, allowing refinement of selective shellfish harvest at
safe beaches, resulting in fewer coastwide closures [32]. Formed in 2006, SoundToxins is
modeled after the successful ORHAB program and adapted to address the HAB issues
in Puget Sound. SoundToxins is the phytoplankton research and monitoring program
for Puget Sound, created to provide an early warning to WDOH, aquaculture producers
and tribal and state natural resource managers about the presence of potentially harmful
plankton. SoundToxins benefits from inclusion of managers as full partners in the program,
resulting in frequent communications to refine and improve data display, outreach and
monitoring locations and frequency. The program aims to advance methods for the early
detection of HABs and provide prediction of bloom events to protect humans from toxic
shellfish, reduce shellfish recalls and lessen harvest losses. It is a diverse partnership
consisting of native American tribes, shellfish farmers, fish farmers, environmental learning
centers, nongovernmental organizations, universities and colleges, state natural resource
and health managers and community members working side by side to monitor Puget
Sound waters. It was conceived and initiated by the National Oceanic and Atmospheric
Administration (NOAA) and is now directed by Washington Sea Grant (WSG).

SoundToxins has grown from 4 partners in 2006 to more than 30 partner organizations
in 2022 (Figure 1). On the outer coast, shellfish companies collaborate with SoundToxins,
and two farms are participating in a NOAA-funded project to better understand shellfish-
killing HABs that impact aquaculture in Willapa Bay. The program partners are well-trained,
and many are paid by their companies, tribes, universities, organizations, or agencies to
conduct the monitoring, while others volunteer their time out of a commitment to better
understand their local Puget Sound stretch of coastline. Often, volunteers join SoundToxins
because they have previous careers in the sciences, such as veterinary or biomedical science.
The three primary goals of SoundToxins are to: 1. document unusual bloom events and
new species entering Puget Sound, 2. provide alerts on increasing harmful phytoplankton
concentrations, and 3. determine the environmental factors that promote the onset and
flourishing of HABs.
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Figure 1. Numbered SoundToxins sampling sites. Partners are identified as Tribe and natural
resource manager (red), aquaculturist (blue), research organization, including universities (gray),
environmental learning center (green), and volunteer participants (orange). SoundToxins sites are:
1. Budd Inlet South, 2. Totten Inlet, 3. Budd Inlet North, 4. Nisqually Reach, 5. Spencer Cove,
6. Quartermaster Harbor, 7. Burley Lagoon, 8. North Bay, 9. Hama Hama, 10. Quilcene Bay,
11. Dabob Bay, 12. Hood Head, 13. Dyes Inlet, 14. Brownsville, 15. Liberty Bay, 16. Port Gamble,
17. Discovery Bay, 18. Sequim Bay South, 19. Sequim Bay North, 20. Mystery Bay, 21. Port Townsend,
22. Fort Worden, 23. Tulalip Bay, 24. Port Susan, 25. Camano Island, 26. Penn Cove, 27. Glenwood
Springs, 28. East Sound, 29. Bellingham Bay buoy, 30. Fairhaven. 31. Gooseberry Point, 32. Birch Bay,
33. Blaine Fishing pier, and 34. Drayton Harbor. Two opportunistic sites in Willapa Bay on the outer
coast of Washington are not shown. All tribes are co-managers of marine resources within their usual
and accustomed areas and sole managers of reservation lands. Management partners not shown
include WDOH, Washington Department of Fish and Wildlife and NANOOS. WSG is the current
director of SoundToxins.

2. Results

Since 2011, the SoundToxins online database allows WDOH, other natural resource
managers and participants to view near-real time data on maps developed for each species
of concern (see Figure 2). When the program was established in 2006, the data required
individual interpretations of cell abundances to assess risk, and maps were not available in
real time. In 2011, with the first occurrence of DSP in Puget Sound, WDOH requested that
SoundToxins create a system that would allow the risk of HABs to be assessed as a summary
map, without having to study the database (Figure 2). This led to the development of
separate risk maps for Alexandrium, Pseudo-nitzschia and Dinophysis and was expanded to
maps of additional reportable species in 2022. The data entered by SoundToxins partners
and the resulting maps are reviewed daily by WSG staff for quality and accuracy.
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100 cells/L (red), abundance between 1–99 cells/L (yellow), absent (green); (B) Dinophysis, abun-
dance above 1000 cells/L (red), abundance between 1–999 cells/L (yellow), absent (green); (C) 
Pseudo-nitzschia, threshold levels were established to distinguish the risk between small and large 
cell type: small cell count greater than or equal to 1,000,000 cells/L or large cell count greater than or 
equal to 50,000 cells/L (red), small cell count below 1,000,000 cells/L and large cell count below 50,000 
cells/L (yellow), absent (green). A gray dot indicates that data have not been entered for that site 
within the past 2 weeks. Required reporting for shellfish-killing HABs has recently been added to 
SoundToxins, and those maps are not shown here. 

Communications by SoundToxins to WDOH Marine Biotoxin staff include e-mails 
and phone calls when the various threshold levels of Alexandrium, Pseudo-nitzschia and 
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include prioritization of shellfish samples from at risk sites, collection of additional sam-
ples or pre-emptive closure of shellfish harvesting areas. 
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SoundToxins monitoring and rapid communication have resulted in successes that 
demonstrate the program’s effectiveness in protecting public health. For example, WSG 
and partners were recently awarded a NOAA grant to document the social and economic 
benefits of the SoundToxins program. Here, we highlight two of many success stories that 
have resulted from the SoundToxins partnership. Our first story occurred in the summer 
of 2011 when three people who had gathered and eaten shellfish at a campsite in north 
Puget Sound were poisoned. During this DSP incident, SoundToxins partners from the 
Jamestown S’Klallam Tribe alerted WDOH to elevated levels of Dinophysis spp. As a 

Figure 2. Example map for the reportable HAB genera Alexandrium, Dinophysis and Pseudo-nitzschia.
Symbols correspond to the following cell threshold levels for: (A) Alexandrium, abundance above
100 cells/L (red), abundance between 1–99 cells/L (yellow), absent (green); (B) Dinophysis, abundance
above 1000 cells/L (red), abundance between 1–999 cells/L (yellow), absent (green); (C) Pseudo-
nitzschia, threshold levels were established to distinguish the risk between small and large cell type:
small cell count greater than or equal to 1,000,000 cells/L or large cell count greater than or equal to
50,000 cells/L (red), small cell count below 1,000,000 cells/L and large cell count below 50,000 cells/L
(yellow), absent (green). A gray dot indicates that data have not been entered for that site within the
past 2 weeks. Required reporting for shellfish-killing HABs has recently been added to SoundToxins,
and those maps are not shown here.

Communications by SoundToxins to WDOH Marine Biotoxin staff include e-mails
and phone calls when the various threshold levels of Alexandrium, Pseudo-nitzschia and
Dinophysis have been observed. Similarly, data are entered into the SoundToxins database
as soon as possible after samples have been analyzed. The interactive relationship between
the WDOH shellfish monitoring program and SoundToxins is shown in Figure 3. The
number of alerts provided by SoundToxins to the WDOH over the last 6 years is shown
in Table 1. Potential actions that are triggered by SoundToxins alerts to WDOH include
prioritization of shellfish samples from at risk sites, collection of additional samples or
pre-emptive closure of shellfish harvesting areas.

Table 1. Number of alerts provided annually by SoundToxins to WDOH.

Year Alert to WDOH

2022 43
2021 42
2020 62
2019 56
2018 34
2017 59

SoundToxins monitoring and rapid communication have resulted in successes that
demonstrate the program’s effectiveness in protecting public health. For example, WSG
and partners were recently awarded a NOAA grant to document the social and economic
benefits of the SoundToxins program. Here, we highlight two of many success stories that
have resulted from the SoundToxins partnership. Our first story occurred in the summer
of 2011 when three people who had gathered and eaten shellfish at a campsite in north
Puget Sound were poisoned. During this DSP incident, SoundToxins partners from the
Jamestown S’Klallam Tribe alerted WDOH to elevated levels of Dinophysis spp. As a result,
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WDOH began including diarrhetic shellfish toxins as part of its routine testing in 2012.
The occurrence of DSP in northern Puget Sound led to the development and funding
of a research proposal to NOAA to study lipophilic toxins, including dinophysistoxins,
yessotoxins and azaspiracids. This research involved SoundToxins partners who conducted
the field sampling. This yielded research studies that have described the presence of
high concentrations of yessotoxins (YTX; [16,20]) and several species of the dinoflagellate,
Azadinium [17], at locations throughout Puget Sound.

Monitoring

Results

Actions

SoundToxins
partners collect and 

analyze phytoplankton 
weekly.

Phytoplankton 
concentration is below 

SoundToxins action 
level

Phytoplankton 
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above SoundToxins
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SoundToxins
leadership notifies 
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shellfish 
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testing
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shellfish tissue is at 
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Harvest area is 
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Harvest area 
remains open

SoundToxins partners 
notify the 24/7 email 

hotline. Triage by 
SoundToxins

leadership

Figure 3. Integration of SoundToxins phytoplankton monitoring with the WDOH shellfish biotoxin
program. One of the key elements of the SoundToxins collaboration is assisting with prioritization
of samples for toxin analysis. A greater number of shellfish samples arrive at WDOH than can be
analyzed in one day; therefore; a strategic approach involves prioritizing shellfish testing on samples
where Alexandrium, Dinophysis or Pseudo-nitzschia are observed. Areas are reopened for harvest
using WDOH shellfish biotoxin data and cannot be reopened using SoundToxins data alone. Sample
triage by SoundToxins leadership includes confirmation of HAB species by microscopy and ensuring
that HAB alert levels are correctly assigned. Solid arrows show the natural flow of information;
the dotted arrows represent WDOH management decisions made possible through collaboration
with SoundToxins. Red boxes show SoundToxins activities, blue ovals show WDOH activities and
purple triangles represent collaborative activities. Databases used for entering SoundToxins data are
accessed through the SoundToxins website [33], and WDOH shellfish toxin data are used to create
Shellfish Safety Maps [34]. SoundToxins leadership alerts WDOH by e-mail and then phone if the
email is not acknowledged. WDOH alerts shellfish growers and tribes in the impacted area by phone
first, then by e-mail, and finally by notating biotoxin closures on the Commercial WDOH Shellfish
Safety map. Recreational shellfish harvesters are alerted by the Recreational Shellfish Safety Map, a
toll-free hotline and by signage posted at harvest sites.

In the second SoundToxins success story which occurred in spring 2015, a SoundToxins
partner at the Taylor Shellfish hatchery noted high numbers of Alexandrium in a water
sample collected from Dabob Bay (see Figure 1 for location) and immediately notified
SoundToxins and WDOH. A shellfish sample was immediately requested by WDOH
for analysis. When the toxin content of this sample was determined to exceed the safe
harvest level, the commercial and recreational shellfish growing area in Dabob Bay was



Toxins 2023, 15, 189 8 of 18

immediately closed, and other growing areas nearby were placed on alert. Multiple trucks
bound for retail and wholesale markets, carrying thousands of pounds of potentially
PSP toxic mussels, were halted. Without the identification and alert of Alexandrium by
a SoundToxins partner, these shellfish would not have been tested by WDOH because
that date fell outside the scheduled biotoxin testing period at this site. The early warning
provided by SoundToxins very likely averted human illness and costly recalls from sales of
toxic shellfish.

3. Discussion

The goal of the WDOH Marine Biotoxin Program (MBP) is to protect humans from
illness and death caused by eating shellfish contaminated with biotoxins. The program
monitors commercially and recreationally harvested molluscan shellfish, including clams,
mussels, oysters, geoduck and scallops. In general, testing of shellfish for marine biotox-
ins by the WDOH occurs at 2-week intervals; however, some areas are monitored less
frequently [6]. The SoundToxins partnership was established to provide routine phyto-
plankton data to alert the WDOH of HABs that could result in shellfish toxicity, especially
during these interim periods when WDOH is not scheduled to monitor. SoundToxins
sites were strategically established with WDOH input to focus on locations where HABs
have historically occurred, where key shellfish resources are located or where additional
sampling is needed. When SoundToxins documents a high risk of HABs, the number
and variety of shellfish tested by WDOH often increases and is prioritized for that site
(Figure 3).

During the first few weeks of the COVID-19 pandemic in Washington State in 2020,
the work of SoundToxins was deemed essential by the WDOH. An urgent request to
continue the program was received from the State of Washington by SoundToxins to provide
critical information that allowed commercial and recreational shellfish harvesting to safely
continue. The WDOH relied more heavily on the SoundToxins partnership because its
staff was re-assigned to assist with COVID-19 testing, leaving them with severely reduced
capacity for shellfish testing during the peak biotoxin season, from May–October, when
the lab often analyzes more than 70 shellfish samples per day. The 27 March 2020 letter
which was sent by WDOH to WSG stated, “The need for early detection of HABs by our
SoundToxins partners has become an increasingly critical component of the MBP. The
vast volunteer network and expertise of SoundToxins leadership greatly enhances our
ability to prioritize biotoxin samples while the Public Health Laboratory runs at near
minimum capacity for testing shellfish samples for marine biotoxins. As we near the peak
biotoxins season, state, local and tribal partners are increasingly focused on managing
direct community threats from COVID-19. Having the SoundToxins early warning system
component in place ensures that we and our partners collect and test regulatory samples
when and where they pose an imminent threat to human health”. Furthermore, MBP could
not receive samples from all areas during COVID-19 due to stay-at-home orders; therefore,
some shellfish harvest locations were closed using SoundToxins data alone.

3.1. Evolution of the SoundToxins Partnership

The SoundToxins partnership has evolved since its inception in 2006. A series of
interviews with SoundToxins participants provided key recommendations to strengthen
the program [35]. The recommendations included providing routine communications with
partners by documenting how data were being used and summarizing recent HAB events.
The needs for an institutional arrangement and for a volunteer coordinator to work with
participants, manage data and streamline communications with the WDOH were also
documented. As a result of this study, WSG joined the SoundToxins program to provide
day-to-day management of the program.
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3.2. Research and Monitoring Benefiting from SoundToxins

SoundToxins has provided a guidebook for the establishment of phytoplankton moni-
toring for HAB early warning [36] that has been used in other geographical locations. The
Southeast Alaska Tribal Ocean Research Partnership [37] was developed using SoundTox-
ins methods and advice [38] by a former SoundToxins participant who moved to Alaska.
Alaska and Oregon phytoplankton data and ORHAB data are entered into the SoundToxins
database with the goal to unify the HAB early warning system on the U.S West Coast.
Similarly, the SoundToxins methods have been shared with researchers in neighboring
British Columbia, Canada [39] and other locations around the world.

Several research projects have been developed with SoundToxins (Table 2), forming
the cornerstone for monitoring, essential for providing data, phytoplankton cultures and
a framework for collection of additional samples needed for these investigations. These
projects have involved teams of national and international investigators who have collabo-
rated with SoundToxins colleagues to rely on local knowledge to help solve worldwide
HAB problems. Graduate student projects (three Master’s and two Ph.D.) have been made
possible through collaboration with SoundToxins. Topics range from the description of
environmental regulators of new HAB risks, the characterization of new toxins and the
incorporation of emerging new tools and technologies for the optimal observation of envi-
ronmental change in Puget Sound. In addition to the projects listed in Table 2, SoundToxins
has contributed to annual Puget Sound Ecosystem Monitoring Program publications, with
the goal to collaborate across monitoring programs in the region [40].

Table 2. Refereed publications that acknowledge or highlight collaboration with SoundToxins.

Year Reference SoundToxins
Contribution Publication Description Lead

Institution(s)

2023 [41] sample collection, sharing
of cultures

Characterization of the toxicity of
a new

azaspiracid, AZA-59

Alfred Wegener
Institute,
Germany

2022 [42] sample collection, sharing
of cultures

Comparison of
Dinophysis species and their toxicity

in the US

Virginia Institute of Marine
Science

2022 [43] methods sharing Global HAB monitoring networks University of
Alabama

2021 [44] data sharing United States HAB trends Woods Hole Oceanographic
Institution

2021 [45] data sharing Global HAB trends University of
Tasmania

2021 [20] data sharing,
emergency response Shellfish killing HABs Washington Sea Grant

2020 [46] methods sharing

Establishment of Alaska HAB
monitoring

program using
SoundToxins methods

University of Alaska

2019 [47] methods sharing
Scaling up from regional case

studies to a global HAB
observing system

Southern California Coastal
Observing System

2019 [48] data sharing,
additional sampling

Characterize a possible new
HAB threat,
Azadinium

Second Institute of
Oceanography, China; NOAA

2019 [49]
data sharing,

additional sampling,
lab analyses

Characterization of
Dinophysis in south

Puget Sound

The Evergreen State College
(Master’s thesis)

2017 [50] additional sampling Genetic characterization of
Pseudo-nitzschia

NOAA
(Master’s thesis)
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Table 2. Cont.

Year Reference SoundToxins
Contribution Publication Description Lead

Institution(s)

2017 [17] additional sampling,
data sharing

Characterize possible new
HAB threat,
Azadinium

Hanyang University, Korea
(Ph.D. thesis)

2017 [51] provide samples for culturing
Characterize optimal growth

conditions for
Alexandrium

NOAA

2016 [52]
provide samples for culturing,

additional sampling, data
sharing

Characterize optimal growth
conditions for

Heterosigma
San Francisco State University

2017 [53] additional sampling,
data sharing

Seagrass as a natural control
mechanism for HABs

Hokkaido Univ.,
Japan; NOAA (Ph.D. thesis)

2015 [3] data and methods sharing
Comparison of marine and

freshwater HAB sampling in
Washington State

NOAA, DOH

2015 [54] additional sampling for Vibrio Identification of environmental
influences on Vibrio occurrence NOAA

2014 [55] data sharing
Seasonal variation of the genus
Dinophysis within Puget Sound,

Washington

Evergreen State College
(Master’s thesis)

2014 [56] additional sampling,
data sharing

Defining optimal growth conditions
for Heterosigma akashiwo San Francisco State University

2013 [39] method sharing
Establishment of British Columbia,

Canada, phytoplankton
monitoring networks

British Columbia Center for
Disease Control

2013 [16] additional sampling, data
sharing

Describing the first diarrhetic
shellfish poisoning event in the USA NOAA

2013 [57] additional sampling
Analysis of rapid toxin analysis

methods for diarrhetic
shellfish toxins

NOAA

2013 [58] additional sampling for Vibrio Development of a method for Vibrio
detection University of Washington

2011 [35] methods sharing,
interviews

Analysis of the
SoundToxins
partnership

University of Washington
(Master’s Thesis)

2010 [59] methods sharing Description of SoundToxins
partnership University of Washington

2009 [60] data sharing Characterization of paralytic
shellfish toxin trends in Puget Sound NOAA

2008 [61] additional sampling,
data sharing

Characterization of saxitoxin in
Puget Sound
Alexandrium

NOAA

2007 [13] additional sampling,
data sharing

Characterization of domoic acid
closures in

Puget Sound
NOAA

2006 [62] additional sampling,
data sharing

Characterization of
domoic acid closures in Puget Sound NOAA

3.3. Funding the SoundToxins Program

SoundToxins was originally supported through NOAA’s Oceans and Human Health
Initiative with funding from the West Coast Center for Oceans and Human Health. Congress
zeroed out NOAA’s budget for this program in 2012, leaving a significant funding gap.
Washington Sea Grant, now the lead organization for SoundToxins, joined as a program
partner in 2008 and assumed the tasks of volunteer coordination, data management and
communications. This management of SoundToxins has been sustained through external
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research grant funding from sources such as the Washington State Department of Ecology,
NOAA competitive research grants and the Northwest Association of Networked Ocean
Observing Systems (NANOOS), all of which are limited in their ability to provide funds
for an ongoing monitoring program. A 2011 study recommended that a secure source of
funding should be found for SoundToxins [35]. In fact, HAB monitoring has been sup-
ported on the outer coast of Washington (for ORHAB), which could be used as a model
for acquiring sustained support of SoundToxins. While ORHAB is funded by Washington
House Bill 1620, which includes a surcharge of USD 2–4 on licenses for shellfish harvesting,
both in Puget Sound and along the outer coast, funding for SoundToxins is not included.
However, a study published in 2014 showed that shellfish harvesters were willing to pay
an average of USD 5 more for their annual shellfish license if this would help reduce the
number of beach closures due to HABs [63], so an additional tax might be considered to
provide sustained support SoundToxins in the future.

3.4. The Future of HAB Monitoring

Recent studies have documented the transfer of freshwater toxins into the marine envi-
ronment and bioaccumulation of low levels in Puget Sound shellfish [64]. The appearance
of these freshwater toxins, such as microcystins, at marine shellfish growing areas near
rivers and in freshwater lakes near Puget Sound [3] illustrate the importance of adaptation
of marine monitoring programs to include new toxins [3]. The threat of these combinations
of marine and freshwater toxins in shellfish is poorly understood, and the risk of freshwater
toxins in marine shellfish is often not quantified. Therefore, the additive or synergistic
toxicity of co-occurring blooms in lakes and marine waters must be studied to establish
appropriate threshold levels for the early warning of combined HAB impacts at the marine
and freshwater interface, a potential area of future research in which SoundToxins could
play a larger role.

SoundToxins provides a unique framework for expansion of monitoring from a focus
on HABs to a more comprehensive program that monitors for multiple stressors that
will fluctuate with climate change, such as marine heatwaves, ocean acidification and
low oxygen events. Cyanobacteria and some marine HABs favor warm temperatures
and other environmental conditions, such as increased nutrient inputs from land, that
will be associated with climate change [65]. Long-term climate projections for the Pacific
Northwest suggest that rain events will increase. These may influence nutrient runoff
from impervious surfaces, particularly as land is developed and regional populations
increase [66]. In Puget Sound, the annual rainfall is projected to increase by up to 30% in the
2050s relative to the 1970–1999 baseline [67]; together with increases in temperature, this
will result in enhanced stratification in the oceanic photic zone. Most of the extreme marine
HAB events around the world are due to dinoflagellates (e.g., [68]) that have a competitive
advantage over non-flagellated phytoplankton under stratified conditions, expected to
increase with climate change, especially in the northeast Pacific [69]. These combined
factors will promote a more favorable environment for both the marine dinoflagellate
HABs [70] and freshwater cyanobacterial HABs, increasing the risk of toxic events that will
threaten shellfish and fish health and safety for human consumption.

Partnerships such as SoundToxins provide protection against these combined pres-
sures that threaten the lucrative shellfish and fish resources of Puget Sound. In the future,
SoundToxins will continue to provide early warning that will lead to adaptive strategies,
such as early harvest, enhanced filtration at aquaculture facilities or changed location
of shellstock, allowing growers and harvesters to continue to benefit from the bountiful
marine resources of Puget Sound. SoundToxins is a dynamic partnership whose diversity,
energy and quest for information is the driving force for its excellence. It is exemplary
in its demonstration that collaborative, inclusive and committed programs succeed by
collaborating toward common goals. SoundToxins prides itself on its iterative process that
optimizes its protocols, outreach and communication strategies, noting that this monitoring
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and research program will continue to benefit the Puget Sound region and beyond well
into the future.

4. Materials and Methods

SoundToxins partners participate in an intensive group training workshop, onsite
individual training and refresher courses throughout the year. Each partner receives a
manual with detailed methods [36] that ensures consistent techniques and protocols are
used throughout Washington State for HAB species monitoring. The methods listed below
are described in more detail in the SoundToxins manual and Quality Assurance Project
Plan (QAPP), which was established as part of the Puget Sound National Estuary Program.
This document established measurement quality precision standards, including acceptable
relative standard deviations of measurements and expected ranges of results. The plan
included sample location and frequency, field measurement types, statistical analysis and
detailed sampling protocols, including equipment decontamination, sample labeling and
field log requirements.

Program partners sign an agreement that includes their commitment to the following
elements: 1. collect samples weekly from the assigned sampling site(s), 2. analyze phyto-
plankton microscopically, providing cell counts for required species and relative abundance
determinations for the remaining species within 48 h of sample collection, 3. send an e-mail
message to the SoundToxins coordinator (soundtox@uw.edu) if alert levels for reportable
species have been reached or exceeded, 4. enter phytoplankton and environmental data
into the SoundToxins database within 3 days of sample collection, 5. attend the annual
SoundToxins meeting, and 6. maintain the commitment to diversity, equity and inclusion.
Participants that do not monitor as part of their paid work (i.e., tribal biologists and shellfish
producers) are volunteers with the University of Washington (i.e., community members),
providing them with insurance during their SoundToxins activities. Some partners have
participated on West Coast NOAA cruises conducting critical phytoplankton research.
Many have also completed the US Harmful Algae Training Program at Bigelow Laboratory
in Maine. Beyond monitoring, participants are encouraged to conduct outreach and other
activities to educate their community about phytoplankton. Some participants provide
regular newspaper and social media reports in their communities; others have hosted phy-
toplankton art installations or have given seminars in classrooms and community centers
and have conducted dockside phytoplankton sampling demonstrations.

4.1. Phytoplankton Collection and Identification

Samples are collected weekly from March to October and every other week in the
winter. Current SoundToxins monitoring sites are shown in Figure 1.

4.1.1. Whole Water Sample

A whole water sample is collected in a 2 L Nalgene bottle by placing it below the
surface of the water or by using a bucket, then filling the bottle. This sample is then trans-
ported to the lab for processing and analysis. An aliquot of the live whole water sample is
observed under the microscope to confirm that Heterosigma is present based on its swim-
ming behavior. Then, abundance is determined using the whole water sample preserved
with 1% formalin (final concentration). At selected sites, chlorophyll, nutrient, particulate
and dissolved toxin samples are obtained from the whole water sample and submitted to
WSG for analysis at the University of Washington Marine Chemistry Laboratory or the
Northwest Indian College in Bellingham, WA, USA.

4.1.2. Concentrated (10×) Whole Water Sample

The 2 L Nalgene bottle whole water sample is inverted to mix, and a 50 mL aliquot is
poured into a 50 mL glass test tube. Buffered formalin fixative (1 mL) is added to a final
concentration of 1%, the tube capped and inverted to mix. After 24 h or more of settling,
the upper 45 mL of seawater is removed using a pipette without disturbing the settled
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sample. The remaining 5 mL of the sample is transferred to a 20 mL scintillation vial. The
10× sample is used to count Pseudo-nitzschia using the Palmer–Maloney slide.

4.1.3. Vertical Net Tow

A weighted 0.2 µm-mesh phytoplankton net (Eastside Research Nets, Redmond, WA,
USA) is dropped from a dock or pier to 1 m from the bottom. The net is pulled to the
surface at a constant speed (about 1 m/s), and the distance towed is noted by counting the
meter marks on the net tow line. The net is pulled through the water column up to three
times. If color is seen after the first or second pull, sampling is stopped. The concentrated
plankton sample in the cod end is mixed gently before pouring it into a collection bottle.
In the lab, the collection bottle is swirled gently, and a subsample is placed in a 20 mL
scintillation vial containing 1 mL buffered formalin fixative. The net tow sample is used to
count Alexandrium, Dinophysis, Protoceratium, Phaeocystis and Akashiwo.

4.1.4. Microscopy

A 0.1 mL net tow or whole water sample is pipetted into a Palmer–Maloney cell and
quantified microscopically (Motic BA31E Phase Contrast Microscope, Barcelona, Spain). All
cells are enumerated at 200× magnification using a Palmer–Maloney counting slide (Elec-
tron Microscopy Sciences, Hatfield, PA, USA). The total volume within the Palmer–Maloney
counting chamber is 0.1 mL, which must be taken into account when calculating the final
concentration in cells/L.

4.2. Environmental Monitoring

Air and water temperature measurements, wind speed, tidal height and salinity are
measured at the monitoring sites when water samples are collected. Air and water temper-
ature are measured using a thermometer, and salinity is measured using a refractometer
(Fisher Scientific; Hampton, NH, USA). Local tide charts are used to estimate tidal height.
Wind speed is estimated using the Beaufort scale [71].

4.3. Phytoplankton Enumeration

Detailed methods used for determination of phytoplankton abundance can be found
in the SoundToxins manual [36]. Abundance of Pseudo-nitzschia is determined from the
10× concentrated whole water as the majority of Pseudo-nitzschia are found near the surface.
Abundances of Dinophysis, Alexandrium, Heterosigma, Phaeocystis, Protoceratium and Akashiwo
are determined from the vertical net tow sample to capture these dinoflagellates that are
often found in subsurface layers. All counts are performed using Palmer–Maloney counting
chambers. Cell abundances are recorded in the SoundToxins database as cells/L.

4.4. Phytoplankton Alert Levels

The alert levels for HAB species were determined using data from past SoundToxins
and ORHAB monitoring and are intended to provide the maximum possible early warning
to health and natural resource managers, tribes and aquaculture producers. SoundTox-
ins partners immediately report the following to soundtox@uw.edu: any observation of
Alexandrium, the first occurrence of Dinophysis and any subsequent increases in abundance
from one week to the next. SoundToxins is alerted to Pseudo-nitzchia using the following
guidance: if the large-celled Pseudo-nitzschia species, including Pseudo-nitzschia australis,
P. heimii, P. fraudulenta, P. pungens and P. multiseries exceed 50,000 cells/L or if the small
cells (P. pseudodelicatissima, P. delicatissima and P. cuspidata) exceed 1 million cells/L (see [32]
for justification for these thresholds), these observations are reported to soundtox@uw.edu
and recorded in the database. The threshold levels corresponding to colored dots on maps
of reportable HAB species are converted to “traffic light patterns” (see Section 4.7, below,
for details) shown in Figure 2.

For the potential shellfish-killing phytoplankton, Protoceratium, Akashiwo and Phaoecys-
tis, alert levels are: when cells are first observed (yellow) and when cell counts are above
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1000 cells/L (red). Any presence of Heterosigma is reported. For all reportable species,
a sampling site is shown as a gray dot if no data are reported for more than 14 days
(April–October) or not sampled for more than 30 days (November–March). A summary
of thresholds for abundance (cell count action levels) used to alert shellfish managers is
shown in Table 3.

Table 3. Phytoplankton abundance and toxicity reportable by SoundToxins to shellfish managers.

Marine
Toxin

Known
Causative

Organism(s)
in WA

Regulatory
Method

Shellfish Toxin
Regulatory

Level (WDOH)

# Shellfish ≥ Regulatory
Level in

Puget Sound
(# Samples Tested) in 2012

Maximum
Concentration

in Shellfish
2012

Water or
Particulate Toxin

Action Level
Cell Count Action

Level

Year of First
Known Illness or

Mortality in
WA State

Saxitoxins Alexandrium Mouse
bioassay 80 µg/100g 59 (2101) 10,304 µg/100g ~100-200 ng STX

equiv./L Alexandrium present 1942

Domoic
acid

Pseudo-
nitzschia HPLC 20 ppm 0 (1305) 7 ppm ~200 ng/L

>50,000 cells/L (large
Pseudo-nitzschia) and

>1,000,000 cells/L
(small

Pseudo-nitzschia)

1991

Diarrhetic
shellfish
toxins

Dinophysis LC/MS-MS 16 µg/g 87 (903) 184 µg/g ~20 ng/L >20,000 cells/L 2011

Yessotoxin Protoceratium
reticulatum n/a 3.75 mg/kg a n/a n/a ~200 ng/L >1000 cells/L 2018

Toxin not
identified

Akashiwo
sanguinea n/a n/a n/a n/a n/a >1000 cells/L n/a

Toxin not
identified

Phaeocystis
globosa n/a n/a n/a n/a n/a >1000 cells/L n/a

a EU regulatory action levels; yessotoxin is not regulated in the USA. WDOH = Washington State Department of
Health; LC/MS-MS = liquid chromatography tandem spectrometry; STX = saxitoxin; HPLC = high performance
liquid chromatography; ppm = parts per million; # = number; n/a = not applicable. Modified from [3].

4.5. Communications

Phytoplankton that threaten human, fish and shellfish health trigger alerts (an imme-
diate email to soundtox@uw.edu) to the SoundToxin program coordinator (see above for
designated alert levels). The reportable algal species involved in harmful human health
risks are Pseudo-nitzschia, Alexandrium and Dinophysis. The reportable algal species having
potentially harmful effects on fish and shellfish are Heterosigma, Protoceratium, Akashiwo
and Phaeocystis. Partners also record what species is at highest abundance (blooming) for
each sampling date and location. SoundToxins partners are encouraged to send alerts,
questions and photos to the SoundToxins email hotline that is monitored 24 h a day 7 days
a week. All alerts reported to soundtox@uw.edu are verified by SoundToxins leadership,
and WDOH, tribes, natural resource, or aquaculture partners are subsequently notified,
depending on the HAB species of concern. Monitoring summaries are sent at least monthly
to all participants through a listserv that also provides additional educational opportunities
for participants. SoundToxins staff also hold ‘office hours’ every few weeks for partners
to gather virtually to discuss topics of interest, identification challenges and recent accom-
plishments. The communication strategy among SoundToxins partners, leadership and
WDOH is shown in Figure 3.

4.6. Data Entry

Data are entered into the SoundToxins database [72] within three days of sample
collection. Most enter data within 26 h of sampling. The SoundToxins database allows users
to view/enter sampling events and species data. Each sampling event is considered a visit
for which date/time, water temperature, tidal height, salinity and associated phytoplankton
data are recorded. Each visit is associated with multiple phytoplankton genera/species
observations (cell count, relative abundance, etc.). The required reportable species must
have either cell counts or “none” reported.
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4.7. Mapping

Data are entered into an online database that generates maps with threshold levels
that are converted to green, yellow or red dots at each sampling site as appropriate. Maps
are created in Oracle APEX (Redwood City, CA, USA) using the Map Region feature and
Oracle Spatial. Dots are gray if data have not been entered within the past 2 weeks. Data
can be accessed in real time by natural resource managers to make timely decisions about
which harvest sites need additional samples or where shellfish should be harvested in
advance of closures.
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